Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Third Semester B.E. Degree Examination, Aug./Sept.2020 **Network Analysis**

Module-1

a. Reduce the circuit shown in Fig.Q1(a) into single voltage source with series resistance between terminals A and B.

Fig.Q1(a)

(06 Marks)

b. Using Mesh analysis, find the current I_1 for the circuit shown in Fig.Q1(b).

(06 Marks)

(04 Marks)

Explain the concept of Super node.

OR

Determine the resistance between terminals A and B of the circuit shown in Fig.Q2(a) using Star to Delta conversion.

Fig.Q2(a)

(06 Marks)

b. Using Nodal analysis, find the value of V_x in the circuit shown in Fig.Q2(b), such that the current through $(2 + j3)\Omega$. Impedance is zero.

Fig.Q2(b)

(06 Marks)

c. Explain the Dependent sources.

(04 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-2

3 a. For the circuit shown in Fig.Q3(a), find the current through 20 Ω resistor using super position theorem.

(08 Marks)

b. For ac circuits, prove that the maximum power deliver to load is $\frac{(V_{th})^r}{8R_{th}}$, where V_{th} – Thevenin's equivalent voltage and R_{th} – Thevenins equivalent resistance. (08 Marks)

OR

4 a. State the Millman's theorem. Using Millman's theorem, determine the current through $(2+j2)\Omega$ impedance for the network shown in Fig.Q4(a).

Fig.Q4(a) (08 Marks)

b. State the Thevinin's Theorem and obtain the Thevinin's equivalent circuit for the circuit shown in Fig.Q4(b).

(08 Marks)

Module-3

5 a. Explain the behavior of a inductor and capacitor under switching conditions in detail.

(08 Marks)

b. The switch is changed from position to position 2 at t=0. Steady State condition have been reached in position 1. Find the value i, $\frac{di}{dt}$ and $\frac{d^2i}{dt^2}$ at $t=0^+$ for the circuit shown in Fig.Q5(b).

Fig.Q5(b) (08 Marks)

OR

6 a. Find the Laplace of f(t) shown in Fig.Q6(a).

(08 Marks)

b. Find the impulse response of the circuit shown in Fig.Q6(b). Assuming that all initial conditions to be zero.

Module-4

- 7 a. Derive the expression for frequency at which voltage across the capacitor is maximum of a series resonance circuit. (08 Marks)
 - b. Show that the circuit shown in Fig.Q7(b) can have more than one resonant condition.

OR

8 a. Determine the parallel resonance circuit parameters whose response curve is shown in Fig.Q8(a). What are the new values of W_r and bond width if 'c' is increased 4 times?

b. Prove that the bandwidth of a series resonance circuit $f_2 - f_1 = \frac{R}{2\pi L}$. (08 Marks)

Module-5

- a. Express the z-parameters in terms of Y-parameter. (08 Marks)
 - b. For the network shown in Fig.Q9(b), find the transmission parameters.

OR

- a. Express the h-parameter in terms of Z-parameters.
 b. Find the z-parameter for the two-port network shown in Fig.Q10(b).